
Vulnerability Coverage for Adequacy Security Testing
Shuvalaxmi Dass
Texas Tech University
Lubbock, Texas, USA
shuva93.dass@ttu.edu

Akbar Siami Namin
Texas Tech University
Lubbock, Texas, USA
akbar.namin@ttu.edu

ABSTRACT
Mainstream software applications and tools are the configurable
platforms with an enormous number of parameters along with their
values. Certain settings and possible interactions between these
parameters may harden (or soften) the security and robustness
of these applications against some known vulnerabilities. How-
ever, the large number of vulnerabilities reported and associated
with these tools make the exhaustive testing of these tools infeasi-
ble against these vulnerabilities infeasible. As an instance of gen-
eral software testing problem, the research question to address is
whether the system under test is robust and secure against these
vulnerabilities. This paper introduces the idea of “vulnerability cov-
erage,” a concept to adequately test a given application for a certain
classes of vulnerabilities, as reported by the National Vulnerability
Database (NVD). The deriving idea is to utilize the Common Vulner-
ability Scoring System (CVSS) as a means to measure the fitness of
test inputs generated by evolutionary algorithms and then through
pattern matching identify vulnerabilities that match the generated
vulnerability vectors and then test the system under test for those
identified vulnerabilities. We report the performance of two evo-
lutionary algorithms (i.e., Genetic Algorithms and Particle Swarm
Optimization) in generating the vulnerability pattern vectors.

CCS CONCEPTS
• Security and privacy → Software security engineering; • Soft-
ware and its engineering → Software configuration manage-
ment and version control systems;

KEYWORDS
Software Vulnerability Testing, Vulnerability Coverage, Genetic
Algorithms (GA), Particle Swarm Optimization (PSO)
ACM Reference Format:
Shuvalaxmi Dass and Akbar Siami Namin. 2020. Vulnerability Coverage for
Adequacy Security Testing. In The 35th ACM/SIGAPP Symposium on Applied
Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3341105.3374099

1 INTRODUCTION
Software systems and applications are often released with a great
number of features and settings. These features and configurations

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3374099

serve their users and the underlying platforms for different pur-
poses such as architectural settings, virtualization, performance,
security and access control, privacy, and system level interactions.
For instance, MySQL Version 5.5 lists more than 600 configura-
tion parameters categorized into 3 groups namely Server Options,
System Variables, and Status Variable References [2]. While these
parameters offer great features to their administrators for setting up
software systems properly, an improper configuration and setting
of such parameters also create loopholes in the systems and thus
are vulnerable to certain known or even unknown security attacks
(i.e., zero-day vulnerability [4]).

According to the National Vulnerability Database (NVD) [3], as
of September 2019, there are 1, 644 records of reported vulnera-
bilities with assigned CVE numbers. Some of these vulnerabilities
are directly the cause of improper settings of the configurations
parameters offered as features by the software systems. From the
software testing perspective, enumerating all configuration set-
tings and then verifying whether the given software is vulnerable
to certain attacks is infeasible.

This paper introduces the concept of “vulnerability coverage” as
an adequacy criterion for choosing instances of vulnerabilities that
the software under test needs to be checked against. The deriving
idea is to utilize the Common Vulnerability Scoring System (CVSS)
as a means to measure the vulnerability level of the software under
test. For instance, a vulnerability with CVE-2019-16383 reported
for MySQL has the severity rated as 8.2 out of 10 and it is labeled
as high. In this paper, we explore vulnerability coverage, as an
adequacy criterion for choosing the vulnerabilities needed to be
examined for the software under test. The key contributions of this
work are as the following:

(1) Introduce the novel idea of vulnerability coverage to be uti-
lized as an adequacy criterion for testing systems and their
configurations thoroughly.

(2) The evolutionary algorithms (i.e., genetic algorithms (GA)
and particle swarm optimisations (PSO)) are adapted to gen-
erate adequate test inputs with respect to the introduced
vulnerability coverage criterion.

(3) The performance of the proposed vulnerability coverage
criterion is reported through a case study demonstrating the
feasibility of the proposed coverage criterion.

We will be using the words Vulnerability Vector/Pattern, CVSS vector,
configurations, interchangeably. This paper is structured as follows:
Section 2 reviews the related works. The concept of Common Vul-
nerability Scoring System (CVSS) is presented in Section 3. The
methodology of adapting the evolutionary algorithms is presented
in Section 4. The evaluation of the proposed idea performed on a
case study is reported in Section 5. Section 6 concludes the paper.

540

https://doi.org/10.1145/3341105.3374099
https://doi.org/10.1145/3341105.3374099

2 RELATED WORK
The work presented in this paper offers some solutions for gener-
ating a set of thorough secure configurations for a given system
when implementing Moving Target Defense (MTD) strategies [13].

Crouse and Fulp [8] used conventional Genetic Algorithms to
implement a Moving Target Defense (MTD) environment to en-
able security through temporal and spatial diversity in computer
configuration parameters.Crouse and Fulp reported that the pool
of configurations becomes stale when there are no changes intro-
duced to the set of configurations over a period of time. As a result,
GA deals with a limited set of configurations.In this approach, the
fitness (security) of aging configurations is reduced by a value (i.e.,
decay value) based on the time since they were last active. Such
weak configurations are eventually replaced by more secure ones.

Lucas et al. [10] described a framework for implementing MTD
at host-level. Their framework uses evolutionary-inspired Genetic
Algorithm (GA) to generate secure configurations. They evaluated
their framework using two qualitative measurements: Fitness score
and pairwise Hamming distance (i.e., diversity).

The use of genetic algorithms in generating a thorough set of test
inputs has been discussed and modeled in literature. For instance,
Andrews et al. [5] used genetic algorithms to enable random testing
more effective. A similar approach is adapted here to produce a
better test inputs for the purpose of maximizing the coverage level
of test pool using the evolutionary algorithms.

3 COMMON VULNERABILITY SCORING
The Common Vulnerability Scoring System (CVSS) provides a way
to capture the principal characteristics of a vulnerability and pro-
duce a numerical score reflecting its severity. The scoring system
also provides a textual representation of the semantic of the cal-
culated score. The numerical score can then be translated into a
qualitative representation (e.g., low, medium, high, and critical) to
help organizations to properly assess and prioritize their vulnera-
bility management processes [1].

CVSS is composed of three main metric groups: (1) Base, (2) Tem-
poral, and (3) Environmental, each consisting of a set of sub-metrics.
Without loss of generality and to demonstrate the feasibility of the
proposed approach, the GA and PSO algorithms are only applied
to the Base metric group. Additional reason that this paper focuses
on the Base metric is due to the fact that the Base metric quanti-
fies the essential characteristics of a vulnerability, which remains
unchanged across different environments and over time. The Base
metric consists of two sub-main metrics:

(1) Exploitability Metrics. It describes the “how” part of the
attack that is being captured, which depends on the characteristics
of the vulnerable components. This metric consists of:

– Attack Vector (AV). It reflects the proximity of the attacker to
attack the vulnerable component. The more the proximity
required to attack the component, the harder it is for the
attacker. The attack vector takes on four values: Network
(N), Adjacent (A), Local (L) and Physical (P).

– Attack Complexity (AC). This metric reflects the resources
and conditions that are required to conduct the exploit on the
vulnerable component. The more the number of conditions

to be met, the higher the degree of complexity of attack is. It
takes on two values: Low (L), and High (H).

– Privileges Required (PR). This metric represents the level of
privileges required by an attacker to successfully launch an
exploit. The lesser the level is, the easier the attack is. It takes
on three values: None (N), Low (L), and High (H).

– User Interaction (UI). It reflects whether the participation of
the user is required for launching a successful attack. The
attack becomes difficult if the user interaction is mandatory.
This metric takes on two values: None (N) and Required (R).

(2) Impact Metrics. These metrics reflect the characteristics of
the impacted components. They consist of:

– Availability Impact. It measures the severity of the attack on
the availability of the impacted component. The metric takes
on these values: None (N), Low (L), and High (H).

– Integrity Impact. It measures the severity of the attack on the
integrity of the impacted component. The metric takes on
three values: None (N), Low (L), and High (H).

– Confidentiality Impact. It measures the severity of the attack
on the confidentiality of the impacted component. It takes
on the following values: None (N), Low (L), and High (H).

(3) Scope Metrics. There is also a vector called “scope” which
describes the scope of the attack (i.e., whether the attack on the
vulnerable component consequently impacted the resources beyond
its means). It takes on two values: Unchanged (U) and Changed (C).

CVSS incorporates all of the aforementioned metrics in a for-
mula to calculate the vulnerability score. The lower the Base score
is, the harder it is for the execution of an exploit on the vulner-
able component. Furthermore, the score is measured using a cer-
tain number of features. For instance, Figure 1 shows the CVSS
score along with the vulnerability vector for CVE-2019-10665 re-
ported for MySQL. As the figure shows, the severity of this vul-
nerability is rated as 9.8 out of 10 and it is labeled as a critical
one. The generated format of the vulnerability/CVSS vector is
[AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H] where [1] :

– AV:N indicates that the Attack Vector (AV) of such vulnera-
bility is set at the Network (N) level.

– AC:L implies that the Attack Complexity (AC) of this vulner-
ability is Low (L).

– PR:N shows that the Privileges Required (PR) for launching
an attack based on this vulnerability is None (N).

– UI:N reports that the User Interaction (UI) and involvement
in enabling launching a successful attack is None (n).

– S:U shows the Scope (S) of the attack is Unchanged (U).
– C:H indicates that the risk of losing the Confidentiality (C)
of data when this attack occurs is High (H).

– I:H implies that the risk of losing the Integrity (I) of data
when this attack occurs is High (H).

– A:H indicates that the risk of losing the Availability (C) of
data when this attack occurs is also High (H).

4 METHODOLOGY
We compared two different evolutionary algorithms for the vulner-
ability pattern generation targeting a certain level of CVSS score, as
fitness function. The optimization algorithms that we implemented

541

Figure 1: The description of CVE-2019-10665 for MySQL.

were: 1) Genetic and evolutionary Algorithms (GA), and 2) Particle
Swarm Optimization (PSO).

We chose the CVSS score as a measure of fitness function because
the diversity of its parameters enable us to adapt typical optimiza-
tion and search techniques such as evolutionary algorithms for
addressing this problem. Moreover, some other researchers have
also adapted these types of greedy algorithms to address similar
problems in test input generations in the context of random testing
(e.g., [5]). Each parameter in the configuration is assigned a score
vector that represents the vulnerability it contains along with its
severity. The score is modeled after the Common Vulnerability Scor-
ing System (CVSS) vector and provides a method for measuring the
security level of an individual configuration parameter setting. The
vector can serve as a foundation to estimate the number of possible
vulnerabilities of a certain configuration. Moreover, to account for
the diversity in the configuration generation, we also calculated
the Hamming distance, which measures how different one pattern
(i.e., configuration) is from another.

4.1 Genetic Algorithm
We developed a python-based genetic algorithm script to generate
a CVSS vector string pool with the best fitness score (i.e., = 2.0).
We call it a “string” since each vector is treated as a string in our im-
plementation. We set the number of iterations = 50 and population
size = 100. The algorithm mainly comprises of five parts:

(1) Configuration Generation: An initial pool of 100 possible
CVSS vector strings was generated randomly.

(2) Fitness Score: The Python library, called CVSS3, implements
the Base metric score it was utilized to calculate the CVSS
scores. The vector strings were assigned their CVSS scores
to be their fitness scores if the former lied between 2.0 and
5.5, otherwise, they were assigned 100.

(3) Breeder’s Selection: This type of selection not only chooses
the best solutions (i.e., vectors with lower score) of the pre-
vious generation but also selects some random ones to avoid
converging soon to a local minima.

(4) Crossover : For crossover, we took the simplest way of ran-
domly switching the values of corresponding metrics among
the two parent vector strings.

(5) Mutation: We performedmutation on the CVSS vector config-
urations by randomly picking one vector field and changing
its value by randomly selecting from permissible values.

4.2 Particle Swarm Optimization Algorithm
We also implemented the PSO algorithm based on the CVSS scores
for the purpose of comparing the performance of PSO with GA on
generating a set of secure configurations. In order to enable the
comparison unbiased, we kept the best score, number of iterations
and the size of population similar to the ones set for GA.

The PSO implementation is similar to GA. However, unlike GA,
PSO is easier to implement as it has no evolution operators such as
crossover and mutation. In PSO, the potential solutions, are called
particles. The algorithm mainly deals with two parameters: (1)
pbest_fitness and (2) particle_vel, which contain the initial
pbest fitness and velocity values for every particle in the swarm,
respectively. The velocity for each particle measures how far is its
fitness score (pbest) from the best score.

The PSO algorithm returns a count of particles with scores = 2.0
or velocity = 0 in every iteration. We set the target global best value
as 10.0, particle_velocity (i.e., Hamming Distance) between the
range [0, 8] as 0 and 8 are the minimum and maximum number of
differences that might exist between two particles, respectively. The
fitness_range is set in the range of [2, 10] where 2.0 is deemed
as the best fit and 10.0 is considered to be poorly unfit.

The Particle Initialization follows a similar strategy as described
for the configuration generation in GA. The algorithm continues
to find the best fitness value and velocity for every particle un-
til it reaches a threshold limit. In each iteration, the algorithm
assigns the pbest_fitness (particle best) values as their CVSS
scores cvss_fit only when the fitness is better (i.e., in our case,
lesser the better) than its current pbest fitness value. It then assigns
the gbest (global best) value of the swarm to be the best pbest
value obtained so far by any particle in the population. After finding
its two best fitness values, each particle updates itself in a similar
fashion as GA where the configurations are mutated whenever
their current velocity values are greater than their previous ones.
For instance, if ‘AV’ vector field gets chosen randomly, then any
one value will be randomly picked from the {H, L, N, A} set.

5 EVALUATION AND DISCUSSION
We evaluated the performance of the two evolutionary algorithms
through a case study. Table 1 reports the percentages of number
of CVSS vulnerability vectors produced for different CVSS score
ranges across 100 runs for both GA and PSO scripts. We observed
that the values came out to be almost similar.

[2.0] (2.0, 3.0] (2.0, 4.0] (2.0, 5.0]
GA 3.505 22.956 34.972 38.567
PSO 3.387 23.144 34.088 39.379

Table 1: The percentage instances of CVSS vectors produced
by GA and PSO for the different score ranges in 100 runs.

542

VENDOR CVE ID VULNERABILITY DESCRIPTION Score

1 Mysql CVE-2019-14939 An issue was discovered in the mysql (aka mysqljs) module 2.17.1 for Node.js. The LOAD
DATA LOCAL INFILE option is open by default 2.1

2 Mysql CVE-2016-7440
The C software implementation of AES Encryption and Decryption inwol f SSL (formerly
CyaSSL) before 3.9.10 makes it easier for local users to discover AES keys by leveraging
cache-bank timing differences

2.1

3 Oracle CVE-2014-6551 Unspecified vulnerability in Oracle MySQL Server 5.5.38 and earlier and 5.6.19 and earlier
allows local users to affect confidentiality via vectors related to CLIENT:MYSQLADMIN 2.1

4 Oracle CVE-2012-3160
Unspecified vulnerability in the MySQL Server component in Oracle MySQL 5.1.65 and
earlier, and 5.5.27 and earlier, allows local users to affect confidentiality via unknown
vectors related to Server Installation

2.1

5 Mysql CVE-2006-4031
MySQL 4.1 before 4.1.21 and 5.0 before 5.0.24 allows a local user to access a table through
a previously created MERGE table, even after the user’s privileges are revoked for the
original table, which might violate intended security policy

2.1

Table 2: The number of vulnerabilities found for CVSS pattern: AV:L/AC:L/PR:N/S:N/C:P/I:N/A:N.

A possible explanation of obtaining similar results for both GA
and PSO is that the number of vector fields for CVSS (i.e., Base
level) is limited to eight. As a result, there are not too many options
for GA or PSO to select from. Therefore, both algorithms converge
to the same values quickly because the search space is very small.
Considering all the other metrics in CVSS might provide a larger
search space for the algorithms.

To illustrate the effectiveness of the introduced adequacy crite-
rion for security testing, we looked up the CVE website [7] and
identified different vulnerabilities whose CVSS patterns matched
the vulnerability pattern produced by GA and PSO. As an example,
based on the CVSS pattern: AV:L/AC:L/PR:N/S:N/C:P/I:N/A:N
(In C: P , P stands for Partial or Low as per the website), table 2
shows multiple CVEs of vulnerabilities we found in the product
MySQL for different vendors along with their description and CVSS
score with the exact CVSS vector pattern matching.

6 CONCLUSION AND FUTURE WORK
This paper introduced the concept of “vulnerability coverage”
as an adequacy criterion for security and vulnerability testing of
software applications. The deriving idea is to utilize Common Vul-
nerability Scoring System (CVSS) as a fitness metric and identify a
set of vulnerability vector patterns that achieves a certain level of
CVSS score. The generated set can be used for adequacy testing of
underlying system in which all or representative sets of vulnerabil-
ities with similar vulnerability vector patterns will be selected for
further inspection of the system under test. The paper compared
two evolutionary-based algorithms namely Genetic Algorithms and
Participle Swarm Optimization and the results indicated a similar
results obtained by these two greedy algorithms.

The novel idea of vulnerability adequacy criterion as introduced
in this paper needs further attentions. To our best knowledge, an
adequacy criterion based on vulnerability coverage does not ex-
ist. There are several other features that need to be investigated
including other metrics incorporated into CVSS and National Vul-
nerability Database (NVD) including temporal and environmental
metrics. Furthermore, the idea needs tool supports and further em-
pirical studies to thoroughly search the NVD database for reported
vulnerabilities with exact pattern matching property for security
testing purposes and investigate the effectiveness of such adequacy
criterion.

The usefulness of Bayesian approaches have been discussed
extensively in the literature [11]. These probabilistic reasoning
approaches can be adapted in the context of uncertainty analysis
for implementing adaptive security testing in dynamic domains (e.g.,
reinforcement reasoning [6]). It is possible to apply these learning-
based algorithms along with temporal properties and dependencies
and then adapt deep learning-based approaches [12] to address
the problem. In the presence of existence of some constraints in
the configuration settings, the problem can be formulated as a
constraint satisfaction problem and the generation of test inputs
using symbolic executions [9].

ACKNOWLEDGMENT
This research work is supported in part by a funding from National
Science Foundation under grant numbers 1516636 and 1821560.

REFERENCES
[1] Access 2019. CommonVulnerability Scoring System v3.0: SpecificationDocument.

https://www.first.org/cvss/v3.0/specification-document.
[2] Accessed 2019. MySQL Version 5.5 Documentation.

https://dev.mysql.com/doc/refman/5.7/en/server-option-variable-
reference.html.

[3] Accessed 2019. National Vulnerability Database. https://nvd.nist.gov/.
[4] Faranak Abri, Sima Siami-Namini, Mahdi Adl Khanghah, Fahimeh Mirza Soltani,

and Akbar Siami Namin. 2019. Can Machine/Deep Learning Classifiers Detect
Zero-Day Malware with High Accuracy?. In IEEE BigData.

[5] James H. Andrews, Felix Chun Hang Li, and Tim Menzies. 2007. Nighthawk: a
two-level genetic-random unit test data generator. In IEEE/ACM International
Conference on Automated Software Engineering. 144–153.

[6] Moitrayee Chatterjee and Akbar Siami Namin. 2019. Detecting Phishing Web-
sites through Deep Reinforcement Learning. In Annual Computer Software and
Applications Conference, COMPSAC. 227–232.

[7] MITRE Corporation. 1999. CVE Security Vulnerability Database. https://www.
cvedetails.com/

[8] M. Crouse and E. W. Fulp. 2011. A moving target environment for computer con-
figurations using Genetic Algorithms. In Symposium on Configuration Analytics
and Automation. 1–7.

[9] Marcel Heimlich and Akbar Siami Namin. 2019. TestLocal: just-in-time
parametrized testing of local variables. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC. 1874–1877.

[10] Brian Lucas, Errin W. Fulp, David J. John, and Daniel Cañas. 2014. An Initial
Framework for Evolving Computer Configurations As a Moving Target Defense.
In The Annual Cyber and Information Security Research Conference. 69–72.

[11] Akbar Siami Namin and Mohan Sridharan. 2010. Bayesian reasoning for software
testing. In the Workshop on Future of Software Engineering Research. 349–354.

[12] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. 2019. The Perfor-
mance of LSTM and BiLSTM in Forecasting Time Series. In IEEE BigData.

[13] Jianjun Zheng and Akbar Siami Namin. 2019. A Survey on the Moving Target
Defense Strategies: An Architectural Perspective. Journal of Computer Science
and Technology 34, 1 (2019), 207–233.

543

https://www.cvedetails.com/
https://www.cvedetails.com/

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

